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The one dimensional fermion gas with 8-function interactions is studied 
within the General Har t ree-Fock (GHF) framework. Solutions of the eight 
Fukutome types are constructed by pairing and the corresponding gap 
equations are solved. The character of the solutions is studied as a function 
of the particle density. 
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Introduction 

Model calculations, even for seemingly unrealistic systems, are often valuable 
for getting familiar with methods and procedures which have so far not been 
applied to the cases they have been primarily designed for. The Hart ree-Fock 
method has certainly been applied to numerous systems and its properties are 
quite well known. That is not the case, however, with what we prefer to call the 
General Har t ree-Fock (GHF) method: a one determinantal scheme without any 
restrictions whatsoever on the spin orbitals used in the determinant. As a step 
in that direction we present in this paper a GHF study of a one dimensional 
Fermi gas with 8-function interactions. 

Herrick and Stillinger [1] have noticed that for a two-particle system confined 
to one dimension the ordinary interaction is equivalent to a 8-function interaction. 
Although for more than two particles no similar result seems to be known, this 
indicates a certain correspondence between the problem to be studied in this 
paper and a three-dimensional electronic system. 
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The 6-function interaction potential has been used by many authors for one 
electron atoms [2, 3], two electron atoms [4-7], a collection of a large number 
of interacting boson-fermion systems [8] and finally for the electron gas in one 
dimension [9] and three dimensions [10-11]. As discussed elsewhere [12-13], 
the 6-function potential not only leads to exactly solvable equations which allows 
a test of various theoretical models, but at the same time exhibits some connec- 
tions with the real problem, as for instance the fulfilment of the same virial 
theorem. Some estimates of various properties of the system are possible by 
choosing the strength of the 6-function potential: 

vii = ~,8 ( x l - x j )  (1) 

in a semiempirical manner [14]. 

We should not forget, of course, the differences as compared with the three- 
dimensional coulomb problem, the most important one being perhaps the 
existence in the case of He like ions, of only one bound state. Having that in 
mind we will be concerned only with the ground state of the one dimensional 
Fermi gas with 6-function interactions and we will try to find the best ground 
state in the one determinant approximation. 

Recent studies of chemical reactions [15], linear chains [16], the electron gas 
[17] within the GHF-framework, have shown, on one hand, that it is too early 
to abandon the one determinant approximation for molecular systems, where 
the various GHF-states or the corresponding projected ones, may in many cases 
compete with CI-methods [18], on the other that such states for extended systems 
offer sufficient flexibility to account for many correlation effects. 

AMO (Alternant Molecular Orbitals) [19] and SDW (Spin Density Waves) 
[9-10] were early examples for extended systems of the existence of single 
determinant states of broken symmetry type with lower energy than the conven- 
tional, restricted Hartree-Fock (RHF). What we now call AMO's were also used 
in Slater's theory of antiferromagnetism [20]. After the derivation of general 
instability equations for a RHF state [33a] a lot of work has been done, especially 
in cyclic polyenes and linear polymer chains [21-26]. 

Given a set of N spin orbitals occupied in an RHF-state and M - N  virtual spin 
orbitals forming together the set 

= {Oocc; Ou,occ} (2a) 

the most general determinant [O) [27b], can be built up of the first N spin 
orbitals of the set 

+ = {r Cz . . . .  r  r . . . .  r  

= { 6  . . . .  ~ . . . .  o} 

= {O .... O . . . .  ~}U(k) (2b) 
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where 

(C(X) -S+(X)~ 
u ( x )  = ~ s ( x )  ~ ( x )  ] (3) 

is a unitary matrix. C(k) is a hermitian N x N matrix, C'(k) hermitian (M - N )  x 
( M - N )  matrix, and $(k) a ( M - N ) x N  matrix. The unitarity of U(k) implies 
certain relations between S(k), COt) and C(k). 

From (2) we have: 

,l, oco = q, occ �9 c ( x ) + ,  . . . . .  �9 s ( x )  (4) 

and by assumption, ~ - is a symmetry adapted basis with respect to all symmetry 
elements present in the system, k is a matrix of variational parameters (Aij) which 
could lead to a state lop) having lower energy than IV). 

In a general spin orbital basis: 

r  (z, ( )  = r  (~) + 4,~(~')/~ (~') (5) 

the most general symmetry group is P x S x T where P is the spatial point group 
of the system, S the group of spin rotations and T the group of time reversal. 
The group theoretical analysis leads to a general classification of the GHF-states 
[(27, 28)]. Thouless [33a] was the first to show the unitary connection between 
two determinants lop) and IV), but the specification (3) of the unitary transforma- 
tion of the basis ~ - and especially the (Eq. 4) made possible an investigation 
of the symmetry connection of two determinants lop) and IV) via the symmetry 
of the variational parameter matrix A, which also gave a classification of 
instabilities. 

We have previously studied [29] a simple connection between this general 
procedure and a "pairing scheme" - where instead of (4) we mix one occupied 
state with an unoccupied one: 

k = l ,  2 . . . . .  N u ~ + v ~ = l  
2 2 / ~ = N + I , N + 2  . . . . .  M Uk--Vk=Ak. 

(6) 

The best matrix k or the best coefficients Uk,Vk' are determined by the variational 
principle. If a pairing scheme like Eq. (6) is used the minimization can be 
expressed in terms of a gap equation [31]. In the present paper we use the orbital 
forms of the gap equation developed by one of the authors [30]. 

The paper is organized as follows. In Section 2 we present the model system, 
the structure of the density matrix and gap equations for each of GHF-states. 
In Section 3 we obtain numerical solutions of the gap equations and discuss the 
obtained results. 
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2. GHF-States of the One Dimensional Fermi Gas with 8-Function 
Interaction 

We use z as the space coordinate. A uniform positive background is assumed 
so as to have a neutral system. 

The length of the chain is: 

L = N .  a (7) 

where N = 2(2m + 1) is the number of particles. The "unit  cell" length a is a 
measure of the inverse density: 

N 1 
n . . . .  (8) 

L a 

As is well known, the plane waves: 

1 ikz 
~? ( k,  z ) = -~--~ e 

with 

2~- 
k = ~ a  ~ 

(9) 

- ~ k < ~  
a a 

N N < K < - -  
2 2 

multiplied by the spin functions a (if) and 3 (~) form a possible set of solutions 
of the Har t ree-Fock equation for the one dimensional electron gas with either 
Coulomb potentials or 8-potentials. 

In the general spin orbital basis Eq. (5), the Fock-Dirac  density matrix is: 

N 

E Ir 
i=1 

p(7:~':; 7:~'i) = ( :  3) N 
E 1r 

i=l  

which can be written as 

~ , [ p : l ( r l ,  r : )  
p(~1~1; ~i~i)= (~ ~)~,p=1(~1; ~:) 

By introducing: 

N(~I; ~i)=o11(7,; 71) +022(7~; ~i) 

i=1 

N 

E 1r 
i=1 

a22(~1; ~'{)]\3]' 

Sx(~l; ~i)  1 - =:[m2(rl, ~I)+p21(71; ~'i)] 

( lo )  

(11) 

(12a) 
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1 

Sz (/~1; ~ )  1 - = ~[m~(r~; ~'~)-p:~(~'~; ~)] 

we get 

p(F~, ~I; 7'~, q~'a ) = (ctfl )Q(F~ ; F'~ ) ( ; )  

with 

Q(F~; ~'~)= ~N(~'~; F~). 12+t~ �9 g(7~, k'~). 

Here  ~ = {O-x, o-y, o-z } is the Pauli matrix vector and 

g(~; ~i)= {&(~; 7~), s,(7~; 7~), Sz(7~; ~)} 

where Y is the spin operator. 

The effective one electron hamiltonian becomes: 

~efr(~) = F(~I) �9 12 + 6 .  (~ (~1) 

where 

F(r'l) = hi + f h~2N(Y2; k'~) d~'2 

1 I 2 hlz "P~z "N(~2; ~;) dr~ 

and 
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(12b) 

(12c) 

(13) 

(14) 

(15) 

(16) 

r 
= - J  d72. ha2" P~2 �9 S(72; f~). (17) 

Here  ha is the one particle operator, h12 the two particle operator and P]2 the 
permutation operator which interchanges ~'1 and 72. 

The total energy is: 

E = E o +  h lN( f l ;  f l )  d~'~ + ~  h12N(71; ~'~)N(f2; f ' 2 )d f~dh  

4 

(18) 

Using this general framework we now study the one-dimensional ,%function 
system for each one of the eight Fukutome classes. 
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2.1. RHF (TICS) State 

In this case we have the set (9) of orbitals in the doubly filled scheme: 

n (k l ,  z )o~(~), n(k2, z)~ (~) . . . . .  n(kN/2, z )~(~) 

n (k 1, z)fl (if), ,/(k2, z ) f l  (~) . . . . .  "1 (kN/2, z)fl (~') (19) 

with 

7 r  , / r  
< k i < - -  

2a  2a 

- m  <_xi <_m. 

From Eqs. (10)-(12) we get: 

N ( R H F ) t z  " Z '  ~ = 2 sin ( 'a'n/2)(z2 ) Z 
k 2 ,  2 1  ~ ' ( Z z - Z ~ )  (20) 

Sx(z2; z~) = S~ (z2; z~) = Sz (z2; z~) = 0. (21) 

From Eq. (15) and the equation: 
~ ( R H F )  / x / L  

ea tZl)'rltX, Zl) = Ek'rl(k, Zl) (22) 

replacing h12 by our model potential (1) we get for the one electron energy: 

!k2 1 ek=z  - ~ y . n .  (23) 

2.2. C C W - S t a t e .  

We introduce a translation q so far undetermined, in momentum space. The 
CCW pairing [29] is: 

{ ~b}k, z)a  = (r/(k, z ) .  u,  +rl(k +q, z)" vk)a 

4~ (k, z )fl = (rl(k, z ) " uk + r l ( k  +q,  z ) " vk)fl  (24) 

with the convention: if k <0 ,  q > 0  and if k > 0 ,  q < 0 .  The choice q =~r /a  
corresponds to the "vertical pairing", which means that in the reduced zone 
scheme we mix states with the same k, one of which is occupied and the other 
unoccupied in RHF. 

We keep a general q and study how the choice of q affects the gap and the total 
energy of the system. 

In order to avoid non-orthogonality complications we exclude values of q such 
that ]q[ < ~r/a. 

From Eqs. (10), (11), (12) and (24) we get: 

N(CCW)(zl, z l ) =  n +4 cosqz~ ~ UkVk (25) 
Z K = - m  

s ( c c w )  r t ~ , - , ( C C W )  ~ r x , - , , (CCW )  r 
x t z l ;  z~)  = a y  tzl;  z l )  = a z  tzl;  z~) =0 .  (26) 

B. Sykja and J.-L. Calais 
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For the gap equation [30, 31] we need 

Ak 
4 ~ "  Ak = & - & (27) 

A(kccw) I ~(ccw) / z ,r ,, =-- eel t 1)trlttZ, Zl)~*(k +q,z ' l )+r l (k  +q, zl)~7*(k,z'~)]dzl 

(28) 

I ~(ccW),z " "k e(K cCw) = dzl eft I, 1)T/~ , Z l ) 7 / * ( k ,  Z ~ )  ( 2 9 )  

f (ccw) ~(ccw) = d Z l ~ e ,  (z l )n(k  +q, zl)rl*(k +q, zl). (30) 

From Eqs. (15), (24), (25) and (28) we get: 

A = A 7  cw,=2-ff-y ~ Uk,'Vk,=yc ~ ~/1-~K, (31) 
L f f t~m K ' ~ - - m  

which shows that in this case the gap does not depend on k. We get further from 
(29) and (30): 

;(kccw) _ g(kccw) = lq (2k + q). (32) 

Combining Eqs. (31) and (32) with Eq. (27) we get the gap equation 

A= yL -I ~ (33) 
A2 + �88 +q)2 

K =--rt t  

which has to be solved numerically. The solution of Eq. (33) becomes easier if 
we use the fact that N is very large and convert the summation to an integration. 

For the total energy, from Eq. (18) we get (with 3' = 1) 

ECcw--ERHF= ~ }(2k+q)(1-ak)-2*-LA 2. (34) 
K ~ - - m  

2.2. ASW State 

The corresponding pairing is: 

&!k , z )a  =O?(k,z)"  uk + , ( k  + q , z ) ' v k ) a  

4) (k, z )fl = (n (k, z) . Uk - n  (k + q, z ) " vk)[3 (35) 

with the same convention for q as in (b), and with the restriction Iq] - rr/a 

From Eqs. (10), (11), (12) and (35) we get: 

N(ASW)(zl, zl) = n (36) 

and 
(ASW) .r S (Asw) (zl, zl) = :~y wl,  z,) = 0 (37) 
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S(zAsW)(zl, Zl) =2cOsq------~z ~ uk "Vg. 
L K~--rll 

The gap splits into two parts: 

A~ (Asw) f d ~(ASW) = - -  Z1 o~ ett (zl) '[~l(k,  z l ) ' * l * ( k + q , z ~ )  

+n(k +q, zl)n*(k, z~)] 

for the a spin orbitals, and 

f ~ t 3 ( A S W ) / z  ~r / ,  A k  ~(ASW)~---t-  dzl  e~ t 1 ) l ' 0 ( g ,  z 1 )  " r l*(k+q,z ' l )  

+ n ( k  +q, zl)rl*(k, z[)] 

~(ASW) and ~mAsw) for the fl-spin orbitals and where ~ ~ 
components of the effective operator (15), respectively. 

We have also: 

f ~ace(ASW) (Z l )  " ~?(k, z l)n*(k,  z'~) dz l  ~(ASW~ 
3 
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(38) 

(39) 

(40) 

are the a and /3 

(41) 

"1~ o / (ASW) J ~(ASW)(zl) '1 (k +q, zl)rl*(k +q, z'l) dz l  (42) e k ~ eft " 

with similar expressions for the/3 components. From (15), (35), (36), (37), (38), 
(39), (40) we get: 

h~(asw)= A~k(ASW)____A(ASW)= 2__y_y ~ Uk'Vk' (43) 
t K = _ m  

which is the same as the h~ ccw~ and indeed independent of k. From Eqs. (27), 
(41), (42), (43) we get: 

y " 
(A(ASW))2 + �88 k + q)2 (44) 

which is identical with the corresponding expression (33) for the A (ccw). For the 
total energy we get: 

E A S W  - -  E R H F  -~- E c c w  - E R H F  

as given by Eqs. (34). 

2.4. TSDW-State  

The corresponding pairing is: 

r  zr = Uk " rl(k, z)a(r  *?*(k +q, z)/3(r 
(45) 

4) (k, z~) = vk �9 ~l (k + q, z )a  (~) + Ukrl * (k, z)/3 (~) 
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With the same convention for q as in Section 2.1, and with the restriction 
[ql >- ~r/a. 

From Eqs. (10), (11), (12), and (45) we get: 

N (TsDw) (zl, zl) = n (46) 

S (TSDW) / 2 
x [Z1, Z1) = ~ - K = - m  UkUk COS [(2k +q)z l ]  (47) 

s(TSDW) ~ 2 m 
tzl, zx) = - ~  K~,~ uk" vk sin [(2k +q)z l ]  (48) Y 

S(? "SDW) (Zl,  Z1) = 0. (49)  

The gap is given by: 

- f  dzl ~(TSDW)(Zx, (~I)[TI (k, Za)rl*(k +q, A~(TSDW) : Z ~)O/((1)~ ( ~ )  

+rl(k +q, zl)n *(k, z~)a((l)fl((~)]. (50) 

From Eqs. (15) and (45) we get: 

A ~(TSDW) 4"y =--ukvk (51) 
L 

which exhibits an explicit k-dependence of the gap A~ TsDw~. 

We have also: 

I ' ~L~ (TSDW) ~(TSDW) : dzx d(~ err (z1, (t)n(klzl)rl*(k +q, z'l)a((1)a((1) (52) 

= I dz~ d& W~)TsDW~(z~, &)n*(k +q, z3n(k +q, zl)fl(&)/~(~'~). ~(TsDw~ 

(53) 

The expressions for fl-components are exactly the same. From Eqs. (27), (51), 
(52), (53) 

,~ ~RSDW) L 21_ =~" (2k+q)'q. (54) 

For the total energy we get (with y = 1): 

ETSDw--ERHF=-~\~a ] �9 N+ ~ �89 + q )  
K=--m 

2 

K~--m 
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2.5. TSDW1-State 

By this we mean the state obtained in Overhauser's way [9, 10]: 

49}k, z~) = uk" rl(k, z)a(~)+vk" rl(k +q, z)fl(C) (56) 
49 (k, z~) = uk " ~? (k, z )~ (~)-vk " rl (k -q, z )a(~) 

where q is kept positive for all k, and with Iql >- ~'/a. 

For the number and spin density matrices we get: 

N(TSDW0(zl, Zl) = n (57) 

2 s(~SDWl)(zl, zl) =Z(cos qzl)- E u~v~ (58) 
K ~- - t t t  

2 s(fSDWO(zl, zl)=~(sinqzl) ~ U k t ) k  (59) 
~=--rn 

S ( T S D W 1 )  t '~  ~ z ~ ,  ~ j  = O. (60) 

The gap can be split into two parts: for the "spin-up" part and "spin-down" 
part in Overhauser's sense, a terminology suggested by the pairing (56), where 
the a spin plane waves are mixed with states to the right of the chosen k-value 
and the fl-spin plane waves are mixed with states to the left. 

Using the same procedure as in the previous cases we get: 

"spin up": 

f dzl dz2 3~[S~(zl, zl)+iSy(zl, zl)]~? (kl, zl)rl*(k +q, zl) A~(~SDWl) = 

+ I dzldz2~[S~(Zl, Zl)-iSy(z~,z~)]r~(k +q, zl)~*(k, zl) (61) 

"spin down": 

I dzl dz2 "y[Sx(Zl, Zl)[-iSy(Zl, Zl)]T/$(k, Zl)T/(k - q ,  zl) A k~(TSDW1)  ~ .  

+f  dzldz2~,[S~(zl, zl)-iSy(zl, zl)]n*(k-q, zl)'q(k, zl) (62) 

both of which lead to the same expression: 

h a(TSDWI)- 13(TSDW0--4'Y ~ Uk,'13k,. (63) 8 =  k - A k  - T  ~=-. ,  

For the gap equation we get: 

82 
8 =  23/ ~ ~82+�88 (64) 

Z tr = - t t l  
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For the total energy, always with 3' = 1 we get: 

: " L. 
ETSDW1 -- ERHF = ~ ~ __~ m + q 2 . . . .  . 
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(65) 

3. Numerical Solutions and Discussions 

We have solved Eqs. (33) and (64) numerically for the fixed value 3' = 1 for 
different q and different densities n = 1/a. Atomic  units are used throughout.  
In Fig. 1 and Fig. 2 we show the dependence of the gap on q and a. The important  
result is that broken symmetry  states do not exist for all possible values of q. 
One finds instead only an interval, the length of which is dependent  on the 
electronic density. This feature seems natural because beyond the just ment ioned 
interval the weight of those mixed states which differ too much in their energies 
becomes dominant.  

The gap, for both cases decreases with the increase of q within the relevant 
interval for any electronic density. 

In Sect. 2 we ment ioned only CCW, ASW, T S D W  and TSDW1 states. But if 
we let q = rr/a then the complex conjugation operator  becomes a symmetry  

2.0 

1.5 

A 

T 
1.0 

CCW 
ASW 

0.5 ~ a - - 8 ~ a = ~  

a:16 

/ , - ~  N, I, I, 

\ 
\ 

\ 

'/ 

~ O=Z, 

 Z,l ,I, a~2 

I I 0 
0.18 0.39 0.78 1 ~.57 2 3 0.18 0.39 0.78 I 1.57 2 

~ q  ~ q  

Fig. 1. The gap A as a function of q for different densities (A, q in atomic units) 

Fig. 2. The gap as a function of q for different densities (A, q in atomic units) 

a--2 
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-7.0 

-8.0 

-._.~a=40 

- ~ a : 1 6  

=/. 

I I I I 
0.18 0.39 0.78 1 

E[[W(ASw)-ERHF 

a=2 

I 

1.57 2 3 
. q 

0 ~ a : 1 6  

E!2.0 

-3.0 
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0.39 0.78 1 1.57 

~ q  

/, 

EISDwI-ERHF 
N 

I I 

2 3 

Fig. 3. The difference of energy per particle in the CCW (ASW)-state w.r. to RHF one as a function 
of q for different densities (E, q in atomic units) 

Fig. 4. The difference of energy per particle in the TSDWl-state w.r. to RHF one as a function of 
q for different densities (E, q in atomic units) 

e lement  and C C W  becomes  a TICS (CDW) state and A S W  becomes  A S D W  or 
the A M O  state. 

In Figs. 3 and 4 we show the difference of the energy  per  e lectron of the b roken  
symmet ry  state with the reference,  RHF-s ta te ,  as a funct ion of the mixing 
pa ramete r  q and for different values of the electronic density. Whereas  the C C W  
(CDW) state in the relevant  interval is always m o r e  stable than R H F  for all 
densities, for TSDW1 this is not  the case. For  some q, and for small and large 
densities, TSDW1 exists, but  becomes  less stable than the RHF-s ta t e ,  in agree-  
ment  with Overhauser ' s  qualitative comment s  [10]. It  is known that  the A M O  
and S D W  states for  the electron gas with 8-funct ion interact ion exist for all 
values of 3/ [9, 11]. In  the just men t ioned  references it is s tated also, wi thout  
actual calculation that  q = ~r/a; or the "vert ical  pair ing" is the best  one.  This 
agrees with our  results. 

We  also notice the different behaviour  of the stability of C C W  (CDW) state 
(which has the same energy  as A S W  (AMO)  state which increases with the 
increase of q, in contradict ion of the stability of T S D W - s t a t e  which decreases 
when q increases. 
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-1.0 

-2.0 

E 
}-3.o 

-4.0 

-5.0 

0 ................................ 

ECcw-ERHF 
N 

Fig. 5. The differences of total energies w.r. ~ ~ , ~ 
to RHF as functions of a for q = zr/q (E, a 2 Z, 8 12 16 2'0 
in atomic units) ~ a 

310 

The interesting thing is that for q = 7r/a, the A S D W  (AMO) or CDW-state and 
also the TSDWl-state  exist and have lower energy then the reference RHF-state. 
In Fig. 5 we show the dependence of mentioned energy differences of A S D W  
and TSDW1 on the electronic density for the value q = 7r/a. It is found that for 
a---3.8 a.u. we have a transition, the TSDW~ state becomes more stable than 
the A M O  state. 

We notice also that the degeneracy between the CCW and ASW is due to the 
particular 8-potential we have chosen and that the assumption of the cancellation 
of the attraction to the positive background with the background-background 
interaction becomes more questionable in the CCW (CDW)-state. 

Finally, the state TSDW, shows up only for q = 0, as it is seen from Eq. (54), 
because for all other q we get Ak outside the interval ( - 1 ,  1). But, as is clear 
from Eq. (55) the reference RHF-state is more stable than TSDW-state.  
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